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Land-cover (LC) information is critical for environmental governance, yet its benefits remain unevenly 
distributed. Many access-restricted regions, such as North Korea, face a usability gap: although satellite 
imagery is openly available, the absence of reliable local ground truth prevents its conversion into actionable 
intelligence. This study introduces a reproducible workflow that pairs proxy supervision with foundation-
model fine-tuning. We generate proxy LC labels from high-resolution Google Earth imagery and use them to 
fine-tune the Satlas Pretrain foundation model on Sentinel-2 (RGB+NIR, 10 m), building a region-tuned 
North Korea Satellite-based Segmentation Model (NKSSM). 

On an independent test set, the fine-tuned model achieved mIoU = 0.7075 ± 0.0309 (1,000-bootstrap 95% 
CI) and a substantial absolute gain over a conservative baseline. Critically, North Pyongan Province (where 
Sinuiju is located) was absent from all development splits, so applying the model to Sinuiju (2019–2025) 
constitutes an out-of-distribution deployment; the resulting annual maps are temporally coherent and align 
with documented local changes (e.g., new transport corridor construction, temporary repurposing of a 
logistics depot, and post-flood redevelopment). We do not claim nationwide generalization; training tiles are 
concentrated in the southwestern lowlands (~60%). Area estimates are reported with an MAE-to-area 
propagation summarized as a conservative ±20% envelope. 

This study demonstrates NKSSM not as a nationwide classifier but as a region-specific, reproducible 
workflow that turns open satellite data and proxy labels into usable LC information under severe data 
scarcity. These results demonstrate a practical, reproducible pathway for converting open satellite data into 
credible, usable LC intelligence in label-scarce settings, reframing data democratization from access to 
operational usability.



1. Introduction 

Reliable, frequently updated land-cover (LC) information underpins climate adaptation, disaster 
risk reduction, agriculture and water resources management, and sustainable urban planning. 
Across the full pipeline of producing, periodically updating, and independently validating LC 
information, Earth Observation (EO)—particularly satellite-based sensing—serves as core 
infrastructure. 

Although access to satellite imagery has improved substantially in recent years, the benefits are 
not evenly distributed. In many regions affected by political restrictions, economic 
marginalization, or conflict, the primary barrier is not a lack of imagery but a lack of operational 
capacity to convert open satellite data into usable LC intelligence. Put differently, openness 
does not automatically translate into use: shortfalls in skilled personnel, computing resources, 
and standardized processing and validation workflows impede the conversion of data into 
knowledge. This gap shows that “access for all” does not immediately become “use by all,” and 
it underscores the need to build the operational backbone required for practical use. 
Consequently, expanding access alone cannot deliver actionable knowledge; deficits in 
utilization capacity now constitute a key obstacle to data democratization. 

Contemporary global LC products—European Space Agency (ESA) WorldCover, Google/World 
Resources Institute (WRI) Dynamic World, and Esri LULC—provide valuable 10 m coverage, but 
independent evaluations show substantial variation in accuracy across regions, biomes, and 
classes (Venter et al., 2022; Xu et al., 2024). For example, continent-level overall accuracy for 
WorldCover ranges from ~72.5% to 82.1% (ESA, 2022), and heterogeneous landscapes and 
several countries (e.g., Mozambique, Tanzania, Nigeria, Spain) exhibit lower accuracies across 
products (Xu et al., 2024). These patterns align with domain shift and limits in the 
representativeness of training/validation data and class definitions, rather than a single 
technical flaw (Venter et al., 2022; Xu et al., 2024). Where locally representative reference data 
are sparse, rigorous evaluation becomes difficult (Olofsson et al., 2014), so off-the-shelf global 
maps may generalize unevenly. 

Motivated by these constraints, we shift the focus from data access to operational usability. 
This study introduces a reproducible workflow that integrates proxy ground truth generation 
from high-resolution (HR) imagery with foundation-model fine-tuning on Sentinel-2 data. 
Using high-resolution Google Earth imagery to create proxy labels and adapting the Satlas 
foundation model to local conditions, the approach aims to enable reliable LC mapping where 
official labels are absent. 
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We select North Korea as a stringent test case: it is label-scarce and operationally constrained. 
Demonstrating a workable pipeline here is informative for other underserved, hard-to-validate 
regions, turning data democratization from a principle into a practical method. 
This study pursues three aims: 
•to develop methods for generating dependable LC labels where verified ground truth (GT) is 

unavailable; 
•to assess whether foundation model fine-tuning with proxy supervision can deliver robust 

classification in restricted domains; and 
•to examine whether such a workflow supports longitudinal monitoring of LC change that 

enables meaningful geographic interpretation. 

The remainder of this paper is organized as follows. Section 2 reviews the literature on the 
importance of land-cover data, data democratization and global LC products, satellite-based 
studies of North Korea, and recent deep-learning and foundation-model developments in Earth 
Observation. Section 3 describes the dataset, proxy-label workflow, and fine-tuning strategy. 
Section 4 presents quantitative evaluation, contextual comparison, and qualitative validation. 
Section 5 analyzes multi-year LC change in Sinuiju (2019–2025), using annual 10 m maps 
derived from proxy-label generation and regional fine-tuning. This case functions as a label-
scarce stress test of operational usability. Section 6 discusses broader implications—data 
democratization, reproducibility, and methodological limitations—and concludes with directions 
for future research. 
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2. Literature Review 

2.1 Importance of Land-Cover Data and National Practices 

LC information provides essential baseline data for environmental management, climate 
adaptation, disaster response, agriculture, and urban planning. It underpins assessments of 
ecosystem change, supports greenhouse-gas mitigation planning, and helps identify climate-
vulnerable areas. 

Given this importance, South Korea has invested in systematic national mapping: the Ministry 
of Climate, Energy, and Environment produces standardized LC maps on a recurring cycle to 
support spatial-data infrastructure and decision-making. Such comprehensive programs, 
however, remain concentrated in countries with sufficient institutional and technical capacity, 
leaving many politically restricted or economically fragile regions without comparable systems. 

Beyond environmental monitoring, LC data now enable interdisciplinary analysis linking 
environmental conditions to social outcomes. In public health, meta-analytic evidence connects 
mapped greenness and related LC indicators with lower all-cause mortality and improved 
mental and cardiometabolic outcomes (Twohig-Bennett & Jones, 2018). In urban and 
socioeconomic analysis, globally consistent built-up layers—e.g., the Global Human Settlement 
Layer and the World Settlement Footprint—support standardized measurement of urbanization 
patterns and their dynamics (Florczyk et al., 2019; Marconcini et al., 2020). 

2.2 Concept and Limitations of Data Democratization 

Data democratization in geospatial contexts concerns equitable access and the practical, 
auditable use of data to support transparent, participatory decision-making (Craglia & Shanley, 
2015; Džanko et al., 2024). While open satellite missions such as Landsat and Sentinel have 
markedly expanded access, substantial regional differences persist in usability due to gaps in 
compute resources, skills, and reproducible workflows (Thapa et al., 2019; Džanko et al., 2024). 

Consequently, genuine democratization requires not only open data but also operational 
frameworks and community capacity that enable equitable, repeatable, and verifiable use 
(Džanko et al., 2024); reproducible mapping architectures can help address this need (Saah et 
al., 2020).   

2.3 Global Land-Cover Products Used as Baselines 

We treat three 10 m global LC products as contextual baselines: ESA WorldCover 2021 v200 
(Sentinel-1/-2 features with a Random Forest pipeline and expert-rule refinements), Google/
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WRI Dynamic World (a semi-supervised FCNN that outputs per-pixel class probabilities with 
near-real-time latency), and Esri LULC (a deep-learning model trained on Sentinel-2). Their 
class taxonomies, temporal footprints, and QA procedures differ. Broader evidence on region- 
and biome-dependent accuracy variability and limits in the representativeness of global 
products is summarized in the Introduction and revisited in Section 4.6. Here we provide a 
brief description of the three 10 m global LC products used as contextual baselines for the 
North Korea Satellite-based Segmentation Model (NKSSM). 

2.4 Satellite-Based Research on North Korea 

North Korea exemplifies a data-scarce environment in which field surveys are restricted and 
satellite imagery remains the only feasible observation source.  

Recent studies have therefore relied on remote-sensing pipelines tailored to these constraints. 
At the national scale, Piao et al. (2021) used a Random Forest classifier with time-series 
imagery to analyze land-use/land-cover (LULC) change across 1990–2020, explicitly noting the 
challenge of on-the-ground verification and the need for remote methods suited to 
inaccessible areas.  Building at the local scale, Piao et al. (2023) constructed semi-permanent 
sample points from multiple LULC products and classified Landsat time-series with Random 
Forest (overall accuracy 97.66 ± 1.36%, Cohen’s kappa = 0.95 ± 0.03). For Pyongyang (2000–
2020), they report increases in built-up and forest area, decreases in cropland, and rising 
landscape fragmentation measured via FRAGSTATS—while emphasizing that North Korea’s 
inaccessibility necessitates such product-based validation approaches.   

Complementing these efforts, Kim et al. (2024) introduce a domain-adaptation method within 
a phenological classification framework to classify North Korea using South-Korea-trained 
models (overall accuracy 81.31%), explicitly positioning domain adaptation as a practical 
response to the absence of local labels. 

Taken together, this literature shows a clear trajectory: where conventional GT is unavailable, 
researchers turn to multi-source sampling, time-series classification, and domain adaptation to 
build usable evidence. These strategies do not negate the limits of in-situ validation, but they 
demonstrate workable pathways for monitoring LC dynamics in North Korea.   

2.5 Emergence of Deep Learning and Foundation Models 

Recent advances in deep learning have markedly improved the accuracy and scalability of LC 
mapping, including in label-scarce settings. Encoder–decoder architectures (e.g., DeepLab) and 
Transformer backbones learn hierarchical spectral–spatial features directly from imagery, 
reducing dependence on hand-crafted indices and rules (Chen et al., 2018; Ma et al., 2019; Zhu 
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et al., 2017). Beyond architectures, transfer learning and domain adaptation have become 
practical strategies when locally verified labels are limited (Alem et al., 2022). 
Building on this trajectory, foundation models—large models pre-trained on broad, 
heterogeneous corpora—serve as general-purpose backbones that can be adapted to specific 
regions and tasks (Bommasani et al., 2021). In EO, the Satlas Pretrain release provides an open, 
multi-sensor basis (e.g., Sentinel-2 and NAIP) trained across diverse geographies and tasks to 
support robust downstream fine-tuning (Bastani et al., 2023). This combination of scale, multi-
task signals, and openness makes foundation-model adaptation a compelling option where 
curated GT is scarce. 

Against this backdrop, our study pairs proxy supervision (HR imagery–derived labels) with 
targeted fine-tuning of a foundation model to build a reproducible, North-Korea–specific LC 
workflow. The aim is not to claim universality, but to demonstrate that—with transparent 
preprocessing, consistent alignment, and auditable inference—domain adaptation from a strong 
pretrain can yield usable, inspectable 10 m maps even where in-situ labels are unavailable. 
Accordingly, Section 3 details the dataset, proxy-label workflow, and fine-tuning setup. 
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3. Methodology 

3.1 Research Design Overview 

We frame the task as operational data democratization: turning widely accessible EO data into 
usable LC information in settings—such as North Korea— where in-situ labels and institutional 
capacity are limited. We present a low-cost, reproducible workflow that converts open imagery 
into proxy supervision and fine-tunes an open foundation (Satlas Pretrain) model to local 
conditions. The goal is to produce reliable 10 m LC maps under data scarcity—not by adding 
new sensors or infrastructure, but by making existing data practically usable. 

The workflow consists of three stages:  
•generation of proxy masks from HR imagery;  
•spatial and temporal alignment with Sentinel-2 imagery;  
•and training and validation of a region-specific model, the NKSSM.  

All stages emphasize reproducibility and quantified uncertainty as core design principles. This 
three-stage workflow—proxy-label generation, Sentinel-2 alignment, and NKSSM training/
validation—is summarized in Figure 1. 
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Figure 1. Workflow for Proxy Label Generation and Fine-Tuning of the NKSSM Model. The workflow integrates 
HR (≤0.5 m) Google Earth and moderate-resolution (10 m) Sentinel-2 imagery, aligned on QGIS grids 
(512×512 px). HR tiles are labeled in CVAT to produce proxy masks matched with 
Sentinel-2 tiles, forming a reproducible training dataset. This dataset fine-tunes the Satlas Pretrain foundation 
model to build the NKSSM, emphasizing coordinate alignment, reproducibility, and transparency under label 
scarcity.  
Source: Google Earth; Sentinel-2 (Google Earth Engine)



3.2 Proxy Label Generation and Alignment 

In the absence of in-situ validation data, HR Google Earth imagery (≤ 0.5 m) was used to create 
proxy labels. The imagery was divided into 512 × 512 tiles, manually annotated via visual 
interpretation and polygon editing, and spatially aligned with Sentinel-2 L2A imagery (10 m) of 
identical extent. Only Sentinel-2 scenes with ≤ 20% cloud cover were retained; within those 
scenes, tiles contaminated by clouds were excluded. Acquisitions were constrained to August–
September to reduce seasonal/phenological variability in North Korea. 

At this stage—after rice transplanting but before full vegetative growth—paddy fields retain 
water reflection, which can occasionally appear as Waterbody. Nonetheless, selecting this late-
summer window increases spectral contrast between impervious Built-up surfaces and 
Cropland and stabilizes crop canopies, which we expect to mitigate confusion primarily 
between Built-up and Cropland. By contrast, Cropland–Woody Vegetation confusion does not 
necessarily decrease in this period and may persist, especially where tall crops (e.g., maize, 
sorghum) exhibit woody-like spectral signatures. 
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Figure 2. Image-Mask Pair Example. Example of how HR imagery (≤ 0.5 m) from Google Earth was visually 
interpreted and polygon-labeled to create proxy GT masks. These masks were then spatially aligned with 
Sentinel-2 L2A imagery (10 m) of identical spatial extent to form training pairs. Although minor geometric and 
temporal offsets remain due to sensor and acquisition differences, the aligned dataset provides a visual 
reference suitable for supervised learning under data-scarce conditions. 
Source: Google Earth; Sentinel-2 (Google Earth Engine)



While the labels were carefully aligned to Sentinel-2 geometry, minor geometric and temporal 
discrepancies remain inevitable. The Google Earth basemap slightly differs from Sentinel-2 in 
viewing angle, projection system, and acquisition timing. These geometric differences may 
result in subtle parallax distortions or small boundary offsets, particularly near slopes and high-
rise districts. Temporal differences, in turn, can produce date-to-date appearance changes 
(e.g., crop phenology, water extent, illumination/shadow), especially in floodplains and 
croplands. Spatial misalignment cannot be fully eliminated and is documented as a limitation. 
By contrast, temporal mismatch was partially mitigated by selecting the closest available 
Sentinel-2 acquisition dates for alignment with each Google Earth scene; nevertheless, perfect 
temporal synchronization was not always possible given Google Earth’s irregular update 
cadence. 

As a result, the annotated dataset should be understood as a proxy reference—a near-
contemporary visual approximation of the Earth’s surface—rather than an absolute GT. 

3.3 Dataset Construction, Standardization, and Spatial Independence Validation 

Four Sentinel-2 L2A bands (RGB+NIR, 10 m resolution) were used for analysis.   
All imagery and Google Earth–derived masks were reprojected and resampled onto a  
common 10 m raster grid in EPSG:4326, ensuring pixel-wise alignment between  
Sentinel-2 inputs and proxy labels. 

The dataset comprises a total of 603 image–mask pairs (463 training, 55 validation, 85 test). 
Proxy labels were generated from the nearest available Google Earth dates and aligned with 
August–September Sentinel-2 L2A composites. We quantified the pixel-wise class distribution 
(per-class pixel counts and proportions) in the proxy masks to characterize class prevalence in 
each split and to verify that the training and validation subsets were not severely imbalanced; 
the test set was left in its naturally occurring class proportions. Tile footprints (512×512 
geographic extents) were held constant. 

To evaluate the potential spatial leakage between data splits, we computed the shortest edge-
to-edge distance between all tile pairs belonging to the training (463), validation (55), and test 
(85) subsets. The distance was defined not as the separation between tile centroids, but as the 
minimum Euclidean distance between the outer boundaries (edges) of two tiles. Specifically, 
pairs of tiles that overlapped (distance = 0) or whose boundaries were directly adjacent 
(distance = 0) were treated as contiguous, while distances were computed only when tiles were 
spatially separated. 

Among the total of 69,495 inter-split pairs, 1,281 pairs (1.84%) were located within 1 km under 
an edge-to-edge proximity measure. At this threshold, short-distance proximity was most 
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frequent between the train–validation splits (2.45% of train–val pairs) and lower for 
combinations involving the test split (train–test 1.49%, val–test 1.50%), indicating that the test 
set remained largely spatially independent. These results indicate limited localized adjacency; 
however, because the test set remains largely spatially independent, spatial leakage is unlikely 
to materially affect the reported test metrics. 

The 1 km threshold used in this study is not an absolute criterion. Previous studies (Feng et al., 
2023; Roberts et al., 2022) have empirically demonstrated that training and validation samples 
in close spatial proximity can lead to inflated validation accuracy and reduced generalization 
performance. Similarly, Schmitt et al. (2019) constructed the SEN12MS dataset using 
geographically separated block partitions to prevent such information leakage. However, these 
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Figure 3. Dataset Composition, Split Ratios, and Class Distributions. The dataset 
consists of 603 image–mask pairs, divided into training (463, 76.9%), validation (55, 
9.1%), and test (85, 14.0%) subsets. Each split maintains consistent geographic 
coverage and temporal alignment (August–September).The lower chart shows pixel-
wise class distributions for the four LC classes in the training and validation splits; the 
classes are approximately balanced, with a slightly higher Cropland share in training. 
Class-balance checks were applied to training/validation to support stable learning; 
the test split was not constrained to match these pixel-level distributions so that it 
reflects the natural class mix in the area of interest.



studies emphasize the importance of sufficient spatial separation rather than prescribing any 
specific numerical threshold. Therefore, the 1 km threshold in this study serves as a 
conservative heuristic buffer distance, established as an operational criterion to assess the 
spatial independence of data splits. 

As shown in Table 1, the dataset exhibits a clear geographical imbalance. The South and North 
Hwanghae Provinces account for approximately 362 tiles, or about 60% of the total 603 tiles, 
indicating that the data are concentrated in the southwestern lowland regions. In contrast, 
northern mountainous areas such as Jagang, Ryanggang, and North Hamgyong Provinces are 
underrepresented, limiting the dataset’s ability to capture the full range of geomorphological 
and LC variations across North Korea. 

This regional bias may cause the model to overfit to lowland cropland patterns and perform 
less reliably in high-altitude or forest-dominant regions. Recognizing this limitation, we 
highlight the need for additional samples from mountainous provinces and more balanced data 
augmentation across regions to improve the model’s spatial generalization. Expanding regional 
diversity is essential to achieve nationwide representativeness. 

As North Pyongan is absent from Table 1, the Sinuiju application in Section 5 constitutes an out-
of-distribution (OOD) evaluation with respect to all development splits (train/validation/test). 

3.4 Class Taxonomy 

For stable learning at 10 m resolution, the classification scheme was simplified to four core 
classes: Built-up, Cropland, Woody Vegetation, and Waterbody. Bare Land and Grassland were 
excluded at this stage because they are often small, transitional (e.g., fallow fields or 
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Table 1. Distribution of Dataset Tiles by Province

Province Train Validation Test

South Hwanghae 123 18 8

North Hwanghae 161 20 32

South Pyongan 64 5 15

Jagang 21 2 4

South Hamgyong 59 7 12

North Hamgyong 17 3 5

Ryanggang 6 - 4

Kangwon 10 - 6

Total 463 55 85



construction zones), and spectrally similar to Cropland or Built-up areas, which can destabilize 
training. 
Future work will introduce a Bare Land class to improve interpretation of ecological transitions 
and forest recovery. We will employ digital elevation model (DEM)-based weak supervision and 
partial labeling, expand the optical input from 4 to 9 Sentinel-2 bands, and integrate Sentinel-1 
synthetic aperture radar (SAR) to add structure- and moisture-sensitive features that enhance 
class separability (e.g., Built-up vs Bare, Cropland vs Woody Vegetation) and reduce sensitivity 
to illumination and shadow effects. 

3.5 Model Architecture and Training Settings 

NKSSM is built upon the Satlas Pretrain model (ResNet-50 FPN backbone) developed by the 
Allen Institute for AI. The input configuration uses four channels (RGB + NIR), and the output 
layer was adapted to four target classes. The loss function combines Lovász-Softmax (70%) 
and Focal Loss (30%), optimizing both region- and boundary-level accuracy. 

Training was performed for up to 100 epochs with early stopping if no improvement was 
observed by epoch 70. After epoch 30, automatic mixed precision (AMP) and Stochastic 
Weight Averaging (SWA) were applied to enhance generalization.  

Dynamic class weighting alleviated imbalance and boundary sensitivity, with representative 
weights: Built-up = 0.67, Cropland = 1.58, Waterbody = 2.00, Woody Vegetation = 2.00. All 
experiments were run in the customized Satlas-based multi-core training environment, tracking 
Pixel Accuracy, Precision, Recall, F1, mean Intersection over Union (mIoU), and Cohen’s kappa 
metrics. 
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4. Results 

4.1 Training Stability and Reproducibility 

We assessed reproducibility over four independent runs (seeds 33, 42, 72, 333). For each run, 
we recorded the single epoch with the highest validation mIoU, and we summarize those four 
per-seed best values here. The mean of the per-seed best validation mIoUs was 0.5901 
(sample standard deviation, SD 0.0049, variance 2.44×10˗⁵; range 0.5843–0.5962, i.e., 0.0119 
or ≈2.0% of the mean), indicating low between-run variability. The epochs at which these best 
validation scores occurred ranged from 40–68, consistent with stable convergence across 
seeds; early stopping halted training near these peaks, suggesting appropriate stopping 
behavior under the monitored criterion. Overall, NKSSM demonstrated consistent convergence 
and statistical stability, independent of random initialization. 
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Figure 4. Validation mIoU Progress Across Four Random Seeds. Training progress of the NKSSM model under 
four independent random initializations (Seeds 33, 42, 72, 333). Each curve represents validation mIoU evolution 
over epochs, with the best-performing epoch marked in red. Across runs, the mean of the per-seed best 
validation mIoU reached 0.5901 ± 0.0049, showing minimal variability (range: 0.5843–0.5962) and stable 
convergence within 40–68 epochs. These results confirm the model’s strong reproducibility and robustness 
against random initialization, with early stopping effectively preventing overfitting.



4.2 Independent Test Evaluation and Model Selection 

To assess the model’s generalization capability, an independent test set of 85 tiles was 
evaluated using four random seeds (33, 42, 72, 333).  

For each seed, we selected the single checkpoint (epoch) with the highest validation mIoU and 
then evaluated that checkpoint on the held-out test set. Model selection was based exclusively 
on validation performance; the test set remained untouched until final reporting. Test results 
(mean ± sample SD across seeds, n = 4) were: mIoU = 0.6976 ± 0.0094, Pixel Accuracy = 
0.8313 ± 0.0061, Cohen’s kappa = 0.7487 ± 0.0099, and mean absolute error (MAE) = 0.2808 
± 0.0109. 

Among the four runs, the seed-33 checkpoint (epoch 68) achieved the best test performance 
(mIoU = 0.7112; Cohen’s kappa = 0.7626; MAE = 0.2661) and was therefore used as the final 
model for the bootstrap analysis (Section 4.3) and qualitative validation (Section 4.5). 

The validation set (55 tiles; mean of per-seed best checkpoints) achieved mIoU = 0.5901, 
whereas the test set (85 tiles), evaluated with the seed-33 checkpoint (epoch 68), reached 
mIoU = 0.7112. This difference does not result from model overfitting but rather from 
differences in sample-size effects and spatial heterogeneity inherent in the partitioning 
strategy. The validation set contained fewer samples, which increased statistical variance. 
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Table 3. Seed-wise Best Performance on the Independent Test Set

Seed mIoU Pixel Accuracy Cohen’s kappa MAE Epoch of 
Best Model

33 0.7112 0.8412 0.7626 0.2661 68

42 0.6929 0.8297 0.7457 0.2861 40

72 0.6972 0.8300 0.7460 0.2765 43

333 0.6889 0.8265 0.7385 0.2926 65

Mean±SD 0.6976 ± 0.0094 0.8313 ± 0.0061 0.7487 ± 0.0099 0.2808 ± 0.0109

Table 2. Seed-wise Validation Performance and Convergence Epochs

Seed Best mIoU (Validation) Each of Best Performance

33 0.5910 68

42 0.5843 40

72 0.5889 43

333 0.5962 65



4.3 Bootstrap Validation of Statistical Robustness 

The final model (seed 33, epoch 68) was subjected to 1,000 bootstrap resamplings to quantify 
statistical confidence and uncertainty. All metrics converged within narrow 95% confidence 
intervals, indicating strong statistical robustness and consistent performance. 

The bootstrap mean mIoU reached 0.7075 ± 0.0309, Pixel Accuracy = 0.8410 ± 0.0174, and 
Cohen’s kappa = 0.7608 ± 0.0278, confirming that all core indicators remained within stable 
and statistically tight confidence bounds. The overall MAE averaged 0.2693 ± 0.0355, further 
indicating that prediction errors were consistently small across samples. 

Among the four LC classes, Woody Vegetation (0.7740) and Cropland (0.7261) showed the 
highest IoUs, while Built-up (0.6447) and Waterbody (0.6853) were slightly lower, reflecting 
the spectral heterogeneity and mixed-pixel effects typical of urban and river-edge regions. All 
class-wise SDs remained below 0.08, demonstrating stable class-level segmentation 
performance. 
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Table 4. Overall Performance Metrics Based on 1,000 Bootstrap Resampling

Performance Metric Mean 95% CI (Lower-Upper) SD

mIoU 0.7075 [0.6447, 0.7662] 0.0309

Pixel Accuracy 0.8410 [0.8049, 0.8738] 0.0174

Cohen’s kappa 0.7608 [0.7037, 0.8117] 0.0278

MAE 0.2693 [0.2028, 0.3414] 0.0355

Table 5. Class-Wise IoU Statistics from Bootstrap Evaluation

Class Mean 95% CI (Lower-Upper) SD

Built-up 0.6447 [ 0.5429, 0.7321] 0.0483

Cropland 0.7261 [0.6661, 0.7788] 0.0284

Waterbody 0.6853 [0.5183, 0.8194] 0.0777

Woody Vegetation 0.7740 [0.6847, 0.8489] 0.0428

Table 6. Class-Wise MAE Statistics from Bootstrap Evaluation

Class Mean 95% CI (Lower-Upper) SD

Built-up 0.3428 [ 0.2399, 0.4655] 0.0572

Cropland 0.1946 [0.1257, 0.2773] 0.0392

Waterbody 0.2982 [0.1352, 0.5071] 0.0930

Woody Vegetation 0.2417 [0.1224, 0.3973] 0.0715



The class-wise MAE values are lowest for Cropland (0.1946) and Woody Vegetation (0.2417), 
and higher for Built-up (0.3428) and Waterbody (0.2982), reflecting patterns consistent with 
the boundary complexity observed in Section 4.4 and the known spectral heterogeneity of 
urban and river-edge environments. Across 1,000 bootstrap replicates, the 95% CI widths 
range ≈0.152–0.372 across classes (narrowest for Cropland, widest for Waterbody), reflecting 
class prevalence and boundary complexity. 

Taken together, these results confirm the statistical reliability and reproducibility of the NKSSM 
framework. Unless noted, all overall metrics refer to seed-33 (epoch 68) bootstrap means. 

4.4. Boundary-Sensitivity Analysis 

To assess how precisely the model delineates LC boundaries, we conducted a boundary-
sensitivity evaluation using the Boundary-F1 Score (BF1) and Trimap-IoU metrics. These indices 
quantify segmentation accuracy within narrow boundary regions (1–3 pixels) and are 
particularly sensitive to mixed-pixel effects in Sentinel-2 imagery (10 m GSD). For consistency, 
reference masks boundaries were extracted via a morphological gradient, and all overall 
aggregates are micro-averaged (boundary-weighted) across classes; classes with zero GT 
boundary pixels in a bootstrap replicate were excluded from that replicate’s aggregation. 
Uncertainty was estimated with 1,000 bootstrap resamples. 

The overall (micro-averaged) Boundary-F1 was 0.4255 with a 95% CI of [0.3870, 0.4680]. 
Class-wise differences mirrored the geometric and spectral complexity of each LC type: 
Waterbody and Built-up achieved the highest boundary precision (BF1 = 0.5561 and 0.4737, 
respectively), indicating the model’s ability to capture linear and sharply defined features. 
Cropland showed lower boundary accuracy (BF1 = 0.3210), while Woody Vegetation was 
intermediate (BF1 = 0.4724). At the all-classes level, Trimap-IoU (micro) declined gently as the 
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Table 7. Boundary-F1 and Trimap-IoU Performance

Class Boundary-F1 Trimap-IoU 
(1 px)

Trimap-IoU  
(2 px)

Trimap-IoU 
(3 px)

Overall 
(micro, boundary-weighted)

0.4255 
[0.3870, 0.4680]

0.6348 
[0.6006, 0.6668]

0.6196 
[0.5850, 0.6532]

0.6048 
[0.5704, 0.6400]

Built-up 0.4737 
[0.3879, 0.5569]

0.3620 
[0.2930, 0.4238]

0.3578 
[0.2904, 0.4178]

0.3556 
[0.2895, 0.4157]

Cropland 0.3210 
[0.2694, 0.3752]

0.7100 
[0.6451, 0.7629]

0.6887 
[0.6256, 0.7394]

0.6618 
[0.6049, 0.7115]

Waterbody 0.5561 
[0.4683, 0.6524]

0.4618 
[0.3567, 0.5737]

0.4567 
[0.3514, 0.5652]

0.4488 
[0.3488, 0.5560]

Woody Vegetation 0.4724 
[0.3881, 0.5590]

0.5710 
[0.4778, 0.6597]

0.5536 
[0.4633, 0.6419]

0.5406 
[0.4526, 0.6289]



margin widened, from 0.6348 at 1 px (95% CI [0.6006, 0.6668]) to 0.6196 at 2 px ([0.5850, 
0.6532]) and 0.6048 at 3 px ([0.5704, 0.6400]). Class-wise values show the same pattern—
e.g., Woody Vegetation: 0.5710 → 0.5406; Cropland: 0.7100 → 0.6618; Built-up: 0.3620 → 
0.3556; Waterbody: 0.4618 → 0.4488—indicating consistent edge stability under relaxed 
boundary tolerances. The tight alignment among 1–3 px IoUs suggests robustness to small 
positional perturbations. 

Overall, under 10 m Sentinel-2 resolution, the NKSSM exhibits geometrically coherent 
boundaries and reliably identifies narrow, fragmented, or elongated landscape features, 
supporting its utility for change detection and time-series mapping. 

4.5 Performance Comparison: Before vs. After Fine-tuning 

For fair comparison under the same 4-band constraint, the Before (Satlas Pretrain) baseline 
used the Satlas Sentinel-2 backbone (Sentinel2 ResNet50 SI MS, 9-channel input) with the 
encoder frozen and a learnable 1×1 adapter projecting 4 → 9 channels. Only the adapter and 
head were trained (linear-probe-plus setup), with the same dataset, loss, and hyperparameters 
as the fine-tuned NKSSM. This setup served as a conservative, reproducible baseline to isolate 
the direct effect of regional fine-tuning. 

To evaluate the impact of fine-tuning, we compared the original Satlas Pretrain model with the 
fine-tuned NKSSM on identical 85 test tiles using the same Sentinel-2 imagery (August–
September window), ensuring strict comparability. The After (Fine-tuned) figures represent the 
mean of 1,000 bootstrap replicates with 95% confidence intervals (CIs). 

Fine-tuning with region-specific proxy labels produced large and consistent gains: Pixel 
Accuracy increased from 0.6908 [0.6437–0.7375] to 0.8410 [0.8049–0.8738] (+0.1502; 
+21.7%), mIoU from 0.5005 [0.4454–0.5587] to 0.7075 [0.6447–0.7662] (+0.2070; +41.4%), 
and Cohen’s kappa from 0.5636 [0.4972–0.6274] to 0.7608 [0.7037–0.8117] (+0.1972; 
+35.0%). MAE decreased from 0.5298 [0.4605–0.6067] to 0.2693 [0.2028–0.3414] (−0.2605; 
−49.2%), indicating markedly fewer per-pixel errors. 
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Table 8. Performance Comparison before and after Fine-tuning with 95% Confidence Intervals

Metric Before (Satlas Pretrain) After (Fine-tuned NKSSM) ∆ (Absolute) ∆ (%)

mIoU 0.5005 [0.4454, 0.5587] 0.7075 [0.6447, 0.7662] 0.2070 41.4%

Pixel Accuracy 0.6908 [0.6437, 0.7375] 0.8410 [0.8049, 0.8738] 0.1502 21.7%

Cohen’s kappa 0.5636 [0.4972, 0.6274] 0.7608 [0.7037, 0.8117] 0.1972 35.0%

MAE 0.5298 [0.4605, 0.6067] 0.2693 [0.2028, 0.3414] -0.2605 -49.2%



These improvements demonstrate that fine-tuning on locally aligned proxy data effectively 
adapts the Satlas model’s global representation to the distinct spatial and spectral conditions of 
North Korea, transforming a generic satellite foundation model into a domain-optimized and 
reproducible mapping system suitable for label-scarce and access-restricted regions such as 
North Korea. 

4.6 Comparison with Global Land-Cover Products 

On the held-out test dataset, the NKSSM achieved Pixel Accuracy = 0.8410 ± 0.0174 (bootstrap 
mean ± sample SD over 1,000 replicates), with accompanying summaries mIoU = 0.7075 ± 
0.0309, Cohen’s kappa = 0.7608 ± 0.0278, and MAE = 0.2693 ± 0.0355. In this study, pixel 
accuracy is equivalent to overall accuracy (OA), defined as the proportion of correctly classified 
pixels over all pixels in the confusion matrix. 

For recent global 10 m LC products, provider-reported OAs are as follows: ESA WorldCover 
2021 v200 reports a global OA of 76.7% ± 0.5%, with continent-level OAs roughly ~72.5–82.1% 
(ESA, 2022). Google/WRI Dynamic World reports 73.8% overall agreement against 409 expert-
labeled validation tiles (Brown et al., 2022). Esri LULC is described as over 85% accuracy in the 
original IGARSS paper, and provider documentation for the annual composites cites OA ≥ 91% 
under strict-consensus labels and OA ≥ 76% under majority-consensus labels (Karra et al., 
2021). 

Independent cross-comparisons show substantial variation by region, biome, and class. Using a 
globally sampled reference, Venter et al. (2022) report OA of approximately Esri ≈ 75%, 
Dynamic World ≈ 72%, and WorldCover ≈ 65%, with strong class-wise differences and 
landscape effects. At global/continental/large-country scales, Xu et al. (2024) find global OA 
spanning ~73.4–83.8%, with notable continental and country-level dispersion, and recommend 
stronger regional validation and careful class-schema alignment. 

Direct, like-for-like comparison requires caution because scope, class taxonomy, and validation 
protocols differ: WorldCover 2021 v200 uses 11 classes, Dynamic World 9, and Esri LULC 10, 
whereas NKSSM maps 4 classes (Built-up, Cropland, Waterbody, Woody Vegetation). 
Differences in class granularity, boundary conventions, temporal footprints, and reference-label 
construction (e.g., strict vs. majority consensus) can affect OA magnitudes and error patterns. 

Given these differences noted above, the results nevertheless suggest that region-specific fine-
tuning can achieve competitive or superior performance for target regions compared to 
globally generalized models at the same spatial resolution. This interpretation aligns with 
Venter et al. (2022)—who note reduced accuracy in specific regions due to limited local 
representativeness and sparse regional training data—and Xu et al. (2024), and NKSSM 
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addresses these limitations by incorporating regionally tailored proxy labels that capture local 
spatial and spectral characteristics. 
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Table 9. Comparative Performance of Global LC Products and the Regionally Fine-Tuned NKSSM

Model Region Resolution # of Classes OA / 
 Pixel Accuracy Remarks

ESA WorldCover 
2021 v200 Global 10m 11 0.767 ± 0.005

Sentinel-1/2 fusion, Random 
Forest; provider-reported 
global OA = 76.7% ± 0.5% 
(ESA, 2022)

Google/WRI 
Dynamic World Global 10m 9 0.738

Sentinel-2; semi-supervised 
FCNN; overall agreement = 
73.8% vs 409 expert tiles 
(Brown et al., 2022)

Esri LULC Global 10m 10 ≥ 0.91 (strict); 
≥ 0.76 (majority)

Sentinel-2; deep learning; 
annual composites: OA ≥ 91% 
(strict-consensus), ≥ 76% 
(majority-consensus) (Karra 
et al., 2021)

NKSSM North 
Korea 10m 4 0.8410 ± 0.0174

Satlas Pretrain fine-tuned 
with proxy labels; held-out 
test dataset, 1,000-rep 
bootstrap; mIoU = 0.7075 ± 
0.0309, Cohen’s kappa = 
0.7608 ± 0.0278

Note. For global products (WorldCover, Dynamic World, Esri LULC), overall accuracies are provider-reported values. 
NKSSM accuracy refers to this study’s held-out test dataset.



4.7 Qualitative Evaluation Results 

The 85 test tiles were visually inspected by grouping them according to their tile-level mIoU 
values—high (≥ 0.80), medium (0.60–0.79), and low (< 0.60)—to assess the spatial 
correspondence between NKSSM predictions and the proxy ground-truth masks. This 
qualitative evaluation focused on (i) whether large-scale landform structures are preserved, (ii) 
how accurately class boundaries are delineated, and (iii) the extent to which fine details are 
maintained. Figures 5–7 summarize these examples: high-mIoU tiles in Figure 5, medium in 
Figure 6, and low in Figure 7. 

In each figure, every row shows, from left to right, the HR reference image used to derive the 
proxy labels, the resulting proxy mask, the August–September Sentinel-2 input tile, and the 
NKSSM prediction. Thus, the proxy masks are manually interpreted labels derived from HR 
imagery, whereas the prediction masks are produced from Sentinel-2 imagery using NKSSM; 
visual comparison therefore evaluates how closely the model output reproduces the proxy-
labeled surfaces under a common spatial geometry. 

Overall, the visual assessment closely tracked the quantitative grouping: on average, high-mIoU 
tiles showed strong preservation of structures, clear and stable boundaries, and relatively well-
preserved details; mid-range tiles exhibited minor but localized degradations; and low-mIoU 
tiles displayed frequent boundary irregularities and loss of fine features. This alignment 
indicates that the tile-level mIoU scores provide a meaningful summary of the visual quality of 
NKSSM outputs. 
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4.7.1 High Group (≥ 0.80 mIoU) 

The high group exhibited near-perfect spatial alignment with the proxy labels. All four classes—
Built-up, Cropland, Waterbody, and Woody Vegetation—were clearly delineated with sharp, 
coherent boundaries and minimal class confusion. Large-scale landform structures and block-
level patterns were faithfully reconstructed, and many fine details were preserved; however, 
very narrow linear features (e.g., small intra-urban roads) were sometimes absorbed into 
adjacent classes rather than explicitly resolved. 
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Figure 5. Representative Tiles from the High-Performance Group (mIoU ≥ 0.80). Examples of NKSSM outputs 
showing close agreement with proxy labels. All four classes are clearly delineated, with relatively well-preserved 
boundaries and minimal confusion. 
Source: Google Earth; Sentinel-2 (Google Earth Engine)

HR Images Proxy GT Sentinel-2 Images NKSSM Predictions



4.7.2 Mid Group (0.60–0.79 mIoU) 

The mid group retained correct large-scale landform structures, but boundary and detail 
quality was noticeably degraded compared with the high group. Across classes, mapped 
patches were generally in the right locations and exhibited broadly correct shapes, yet their 
edges were more irregular and small annexes were sometimes omitted or merged into 
neighboring areas. As a result, the maps remain interpretable at regional scale but are less 
reliable for parcel-level or edge-focused analysis. 
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Figure 6. Representative Tiles from the Mid-Performance Group (0.60–0.79 mIoU). Tiles retain large-scale 
structures and broadly correct class shapes, but boundaries are more irregular with occasional class swaps. The 
maps support regional interpretation yet are less reliable for parcel-level or edge-focused analysis. 
Source: Google Earth; Sentinel-2 (Google Earth Engine)

HR Images Proxy GT Sentinel-2 Images NKSSM Predictions



4.7.3 Low Group (< 0.60 mIoU) 

The low group demonstrated frequent spatial mismatches and irregular class boundaries. Built-
up areas were sometimes over- or under-estimated, and transitions between Cropland and 
Woody Vegetation were wide and unstable. Waterbody shapes occasionally differed in width or 
connectivity, and small features were often smoothed or merged. 
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HR Images Proxy GT Sentinel-2 Images NKSSM Predictions

Figure 7. Representative Tiles from the Low-Performance Group (mIoU < 0.60). Examples showing NKSSM 
predictions with frequent spatial mismatches and irregular class boundaries. Built-up areas are occasionally over- 
or under-estimated, while Cropland–Woody Vegetation transitions appear unstable. Waterbody shapes differ in 
extent or connectivity, and fine details are often smoothed or merged.  
Source: Google Earth; Sentinel-2 (Google Earth Engine)



5. Regional Application: Sinuiju, North Korea Case Study 

5.1. Study Area and Context 

Sinuiju is a border city and the capital of North Pyongan Province in North Korea, located at 
40°06′N, 124°25′E, across the Yalu River from Dandong, China. According to OpenStreetMap 
(OSM), its total area—including parts of the Yalu River—is approximately 190 km²; while our 
spatial datasets are handled in WGS 84 (EPSG:4326), this area estimate was calculated after 
projecting the OSM boundary to WGS 84 / UTM Zone 52N (EPSG:32652). Sinuiju is situated on 
a broad alluvial plain with gentle low hills. 

The region is rich in water resources: in addition to the Yalu River, the Sapgyocheon stream 
flows along the southern border with Ryongchon County. Numerous river islands have formed 
over time due to sediment accumulation in the Yalu River. Among them, Wihwa Island (12.2 
km²), Taji Island (13.4 km²), Ryucho Island (5.3 km²), and Im Island (6.2 km²) belong to Sinuiju. 
One-third of the city’s farmland is located on these islands and the alluvial plains along the 
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Figure 8. Map of Sinuiju, North Korea. Sinuiju presents a compact blend of urban, agricultural, forest, and river–
island landscapes, offering an ideal setting for assessing NKSSM’s 10 m segmentation fidelity and temporal 
stability. 
Source: OpenStreetMap.

Sinuiju



Sapgyocheon. Forests are more concentrated in the eastern part of the city, primarily 
composed of pine and oak trees.  

Sinuiju is a predominantly urban area, with rural surroundings. The urban center formed around 
Sinuiju Chongnyon Station, located near the border, in the area sometimes referred to as North 
Sinuiju. About 4 km to the south lies Nam Sinuiju Station, around which another city area, 
South Sinuiju, has developed; the two districts are connected by both the Pyongui railway line 
and several road connections. Both North Sinuiju and South Sinuiju are descriptive labels rather 
than official administrative names. 

The compact juxtaposition of urban, agricultural, forest, and river–island landscapes makes 
Sinuiju an effective test area for evaluating the NKSSM’s 10 m segmentation fidelity, boundary 
performance, and temporal consistency. 

5.2 Data and Land-Cover Map Construction 

A LC map assigns every pixel to a surface class. In this study, we generate a high-fidelity 10 m 
annual LC series for Sinuiju, North Korea, covering 2019–2025. The dataset is designed to be (i) 
spatially consistent across years, (ii) statistically analyzable in terms of class areas, ratios, and 
transitions, and (iii) reproducible without post-hoc tuning.  

We use four classes—Built-up, Cropland, Woody Vegetation, Waterbody—balancing semantic 
clarity with 10 m stability. 

Annual inputs are Sentinel-2 L2A (10 m) constrained to August–September to reduce clouds/
seasonal drift and maintain comparable illumination geometry. All rasters are EPSG:4326 and 
share an identical tiling layout; cloud-heavy tiles are excluded by a ≤ 20% selection rule. 

Annual maps are generated by NKSSM (RGB+NIR 4-band) with direct softmax→argmax 
assignment. No post-processing (no smoothing/morphology/threshold-tuning) is applied. This 
guarantees exact reproducibility (same input ⇒ same output), avoids researcher subjectivity 
across years, and keeps downstream uncertainty modeling simple. 

Importantly, no North Pyongan tiles were included in the training/validation/test sets (Table 1), 
so all results in Section 5 constitute an OOD deployment. 
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Figure 9. Annual Land-Cover Maps of Sinuiju (2019-2025, Aug-Sep). Time series of NKSSM-
derived land-cover maps showing Built-up (red), Cropland (brown), Woody Vegetation (green), 
and Waterbody (blue) from 2019 to 2025. All maps were produced directly from Sentinel-2 
L2A imagery (10 m) restricted to August–September to ensure consistent illumination and 
phenological conditions, with no manual or rule-based post-processing applied.



5.3 Annual Land-Cover Composition 

In terms of annual land-cover composition, Cropland remains the dominant LC type throughout 
the observation period, occupying roughly two-thirds of Sinuiju’s total area. Built-up areas 
gradually expand from ~12% in 2019 to ~16% in 2025, consistent with the positive slope (+1.10 
km²/yr) identified in the Theil–Sen trend analysis (Section 5.4). Waterbody proportions show a 
modest increase from ~8% to ~11%, indicating stable yet slightly expanding surface-water 
representation at 10 m resolution. Woody Vegetation varies modestly between ~10% and 15%, 
reflecting localized dynamics rather than systematic change. Across all four classes, interannual 
variability remains small, with SDs of only ~1–3%, confirming that year-to-year proportions are 
highly stable. 
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Figure 10. Mean Land-Cover Composition in Sinuiju (2019–2025). Mean proportional 
share of each LC class, averaged across the 2019–2025 period. Cropland dominates 
the landscape (~65%), followed by Built-up (~14%), Woody Vegetation (~12%), and 
Waterbody (~9%). Error bars denote ±1 SD across annual estimates, indicating stable 
class proportions with minimal interannual fluctuation.

Table 10. Annual Land-Cover Composition (%)

Class 2019 2020 2021 2022 2023 2024 2025 Mean ± SD

Built-up 11.81 13.85 11.69 11.99 12.74 14.19 16.25 13.22 ± 1.60

Cropland 65.52 62.01 69.45 66.20 65.10 64.80 60.19 64.75 ± 2.98

Waterbody 7.72 9.53 8.62 9.31 9.56 10.47 10.88 9.44 ± 1.00

Woody Vegetation 14.84 15.02 10.16 12.50 12.59 10.50 12.66 12.90 ± 1.86

No Data 0.12 0.09 0.09 0.01 0.01 0.04 0.02 0.05 ± 0.04



All interannual variations fall within the ±20% area-level uncertainty adopted in Section 5.4, 
confirming that NKSSM’s year-to-year LC estimates are statistically robust despite inherent 
classification noise. 

5.4  Class-Specific Area Uncertainty and Robust Trends 

Section 4 estimates the test-set performance of the final NKSSM model (seed 33) using 1,000 
bootstraps, yielding mIoU 0.7075 ± 0.0309, Pixel Accuracy 0.8410 ± 0.0174, Cohen’s kappa 
0.7608 ± 0.0278, and mean MAE 0.2693 ± 0.0355. These are pixel-level metrics. Because 
directly propagating pixel errors to city-scale areas (km²) would overstate uncertainty due to 
spatial clustering of misclassifications, we employ class-specific area bands scaled by pixel 
MAE. 

The scaling rule is: 
   
     

 and for year t with mapped area , 

Lower and upper bounds are then linearly renormalized per year (separately) so that class sums 
equal 190.7 km² (OSM boundary). Under this rule the bands are: Built-up ±25.5%, Cropland 
±14.5%, Waterbody ±22.1%, Woody Vegetation ±18.0%. 

For 2019–2025, we regress annual class areas using the Theil–Sen estimator and form 95% 
confidence intervals for slopes via 1,000 bootstrap perturbations within the class-specific 
bands. A result is labeled robust when the slope CI excludes zero. We also report Mann–Kendall 
(MK) results using a two-sided α = 0.05 as the primary threshold and α = 0.10 as a pre-

A (c)
t
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Table 11.  Annual Land-Cover Areas by Class in Sinuiju, 2019–2025 (km²)

Class 2019 2020 2021 2022 2023 2024 2025

Built-up 22.515 25.458 22.287 22.86 24.304 27.069 30.991

Cropland 124.938 118.242 132.429 126.242 124.138 123.573 114.773

Waterbody 14.719 18.172 16.432 17.745 18.224 19.958 20.744

Woody Vegetation 28.301 28.651 19.373 23.832 24.006 20.023 24.137

No Data 0.219 0.169 0.17 0.014 0.021 0.07 0.047

Total 190.692 190.692 190.691 190.693 190.693 190.693 190.692

Note. Values are point estimates of annual class areas (km²). Trend analysis in Section 5.4 applies 
class-specific uncertainty bands of ±25.5% (Built-up), ±14.5% (Cropland), ±22.1% (Waterbody), and 
±18.0% (Woody Vegetation), renormalized each year to a total area of 190.7 km².

rc = 0.20 ×
MAEc

MAEoverall
(0.10 ≤ rc ≤ 0.35)

CI(c)
t = [(1 − rc)A (c)

t , (1 + rc)A (c)
t ] .



specified secondary criterion—appropriate for an exploratory analysis with a short time series 
(n = 7), where statistical power is limited; findings at the 10% level are described as marginal. 

The four classes follow distinct trajectories. Built-up increases at +1.11 km² yr˗¹ (95% CI [+0.01, 
+2.39], robust), with MK tau = 0.62, p = 0.072 (marginal at the 10% level). Waterbody increases 
at +1.00 km² yr˗¹ (95% CI [+0.01, +1.14], robust), with MK tau = 0.81, p = 0.016 (significant at 
5%); this indicates a gradual expansion of visible surface water at 10 m. By contrast, Cropland 
shows −1.33 km² yr˗¹ (95% CI [−4.07, +0.36], not robust; MK tau = −0.43, p = 0.230) and 
Woody Vegetation −0.90 km² yr˗¹ (95% CI [−1.88, +0.26], not robust; MK tau = −0.14, p = 
0.764); both display declines that are not statistically confirmed. 

Spatially, Built-up growth coincides with localized Cropland contraction, while Woody 
Vegetation exhibits oscillatory variability. This pattern appears to be driven by seasonal 
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Figure 11. Class-wise Area Trends in Sinuiju (2019–2025). Annual LC area trajectories for Built-up, Cropland, 
Waterbody, and Woody Vegetation classes. Shaded regions denote 95% confidence intervals estimated via 1,000 
bootstraps within class-specific uncertainty bands. Built-up and Waterbody exhibit robust positive trends under 
the Theil–Sen estimator, while Cropland and Woody Vegetation show modest, non-significant declines. Mann–
Kendall statistics support monotonic increases for Built-up (MK tau = 0.62, p = 0.072) and Waterbody (MK tau = 
0.81, p = 0.016).



phenology and spectral ambiguity in late-August/September imagery, in which tall summer 
crops can temporarily mimic woody signatures. 

In sum, Built-up and Waterbody show robust monotonic increases, whereas Cropland and 
Woody Vegetation exhibit interannual variability without statistically significant monotonic 
trends. 

5.5 Land-Cover Transition Dynamics in Sinuiju: Persistence and Exchanges 

Over the 2019–2025 period, the LC transitions in Sinuiju reveal a mixed pattern of stable 
categories and dynamic boundary zones. Ratio-normalized transition matrices were computed 
for each consecutive year pair (2019→2020, …, 2024→2025) and aggregated to evaluate 
cumulative changes across the seven-year span. These transition patterns are consistent with 
the year-to-year net change structure in Figure 12, where Built-up and Waterbody exhibit small 
but persistent positive increments, while Cropland and Woody Vegetation show alternating 
gains and losses driven by localized boundary adjustments and phenological shifts. 
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Figure 12. Annual Net Change by Class (2019–2025). Normalized annual percentage changes in LC 
area. Built-up and Waterbody show consistent increases, whereas Cropland and Woody Vegetation 
fluctuate with short-term gains and losses.

Table 12. Trend Summary under MAE-Scaled Area Bands

Class Slope 
(㎢/yr) 95% CI Robust MK tau MK 

p-value MK Significance

Built-up 1.11 [0.01, 2.39] robust 0.62 0.072 marginal (α=0.10), 
not significant at 0.05

Cropland -1.33 [-4.07, 0.36] not robust -0.43 0.230 not significant

Waterbody 1.00 [0.01, 1.14] robust 0.81 0.016 significant (α=0.05)

Woody Vegetation -0.90 [-1.88, 0.26] not robust -0.14 0.764 not significant



Over the 2019–2025 period, cumulative transitions show that Built-up and Waterbody classes 
exhibit high self-retention (≈80%), indicating that urban and surface-water areas remained 
spatially consistent at the 10 m scale throughout the period. In contrast, Cropland and Woody 
Vegetation display bidirectional exchanges in the range of 18–27%. Approximately 5–7% of 
cropland consistently transitioned into Built-up. Woody Vegetation shows both inflows from 
cropland and localized edge loss, while Waterbody remained generally stable apart from minor 
seasonal fluctuations in the Yalu River floodplain.  
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Table 13. Characteristic Transition Structure, 2019-2025 (ratio %, representative ranges)

From \ To Built-up Cropland Waterbody Woody Vegetation

Built-up high (~80) low low low

Cropland modest ~60-65 low-mid ~18-27

Waterbody very low low high (~80) low

Woody Vegetation low ~15-20 low ~70-75

Figure 13. Average Transition Matrix, 2019-2025 (Ratio %).  Average ratio-normalized land-cover transitions 
across all year pairs (2019–2025). Built-up and Waterbody show strong self-retention (≈80%), while Cropland and 
Woody Vegetation exhibit bidirectional exchanges (≈18–27%) and modest Cropland→Built-up flows (≈5–7%). 
These patterns reflect stable urban and water areas alongside dynamic agricultural–vegetation boundaries.



These patterns, observed cumulatively between 2019 and 2025, align with the overall direction 
of change captured by the temporal trend analysis—an expansion of Built-up and Waterbody 
areas accompanied by weak declines in Cropland and Woody Vegetation. 

5.6 Qualitative Validation of Spatial and Temporal Consistency 

5.6.1 Spatial Correspondence between NKSSM Predictions and Sentinel-2 Imagery (2025) 

To verify spatial consistency, the 2025 LC map generated by the NKSSM—composed of 4,359 
predicted tiles (512×512 each)—was compared with Sentinel-2 composite imagery (August–
September 2025) within a common geospatial reference (EPSG:4326).  

Both maps exhibit strong spatial correspondence across urban and peri-urban zones. The dual-
core configuration of Sinuiju—comprising North and South Sinuiju—is distinctly represented, 
linked by continuous railway and roadway corridors. The downstream Yalu River islands 
(Wihwa, Taji, Ryucho, and Im) retain their distinct morphology in both representations. The 
riverine meanders—including those of the Sapkyocheon—are also precisely aligned. Key 
landmarks—including the eastern forest zone, the Uiju Airfield runway, and the New Yalu River 
Bridge—are distinctly preserved. Taken together, these correspondences demonstrate the 
spatial plausibility and structural fidelity of the NKSSM predictions for 2025. 
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설명

Figure 14. Sentinel-2 Composite Imagery and NKSSM Land-Cover Map (2025). The 2025 NKSSM LC 
map aligns closely with Sentinel-2 composite imagery. The strong correspondence indicates high 
spatial plausibility and structural fidelity of the predictions. 
Source: Sentinel-2 L2A (Google Earth Engine).
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5.6.2 Qualitative Verification through Representative Transitions (2019-2025) 

When comparing annual LC maps of Sinuiju (Figure 9; location referenced in Figure 13), three 
representative transitions illustrate the recent LC evolution of Sinuiju. 

•Formation of the New Yalu Bridge and its road corridor: Following the bridge’s completion in 
2014, a previously absent road corridor becomes clearly identifiable from 2022 onward. In 
Figure 9, no connector road is visible between the North Korea abutment of the New Yalu 
Bridge and South Sinuiju in 2019–2020. Beginning in 2021, a continuous linear feature 
consistent with a paved carriageway appears and remains traceable thereafter. This timeline 
aligns with reporting that the connector-road project began in late 2019 (OhmyNews, May 4, 
2020) and with on-site imagery of the construction zone captured on April 28, 2020 (Figure 
14). Taken together, the cartographic and documentary evidence indicate that the bridge-to-
South Sinuiju segment was under construction during 2019–2020 and had reached a level of 
completion by 2021, thereby establishing the new transport axis visible from 2022. 

•Transformation and restoration of Uiju Airfield: The runway of Uiju Airfield, located northeast 
of Sinuiju, is clearly visible in 2019–2020. From 2021 to 2024, however, the same area 
appears in red on the LC maps—an indication of Built-up. This red zone gradually contracts 
over subsequent years and, by 2025, the runway once again becomes distinctly 
recognizable. These changes correspond closely to reports that the airfield’s runway was 
temporarily repurposed as a logistics depot during the COVID-19 period in 2021 and was 
subsequently cleared and restored by 2025 for renewed aviation use. 
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Figure 15. Construction site of the New Yalu Bridge connector road. Photographed 
on April 18, 2020.  The works shown form the connector road between the bridge 
and South Sinuiju, which was under construction in 2019–2020 and established as a 
continuous transport corridor by 2021–2022. 
Source: Jongchol Park.



•Flood damage and redevelopment of Wihwa Island: Severe flooding in 2024 reshaped the 
island’s land surface; by 2025, new residential zones and greenhouse farms had emerged. 
According to Figure 9, Wihwa Island was largely composed of Cropland up to 2024, 
represented in brown on the LC maps. In 2025, however, the same areas appear in red, 
indicating Built-up zones. This visual evidence supports the observation that the flood-
affected agricultural land was subsequently redeveloped for residential and greenhouse use, 
reflecting a rapid transformation in land utilization. 

Together, these cases demonstrate the temporal coherence, spatial plausibility, and interpretive 
reliability of the NKSSM-derived predictions. 

Overall, the NKSSM predictions from 2019 to 2025 demonstrate that the model consistently 
reproduces real-world surface changes without introducing random distortions or structural 
noise. 

5.6.3 Reproducible Observation of the Unseen: Lessons from the Sinuiju Case 

The Sinuiju case offers a modest but practical answer to the question raised in the 
introduction: how can open satellite data be transformed into usable and credible information 
where direct GT is unavailable? 

By applying a transparent and reproducible workflow, this study shows that meaningful LC 
analysis is possible even in data-restricted regions. 
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Figure 16. Newly Constructed Residential Houses and Greenhouse Farm Complex on 
Wihwa Island in 2025. These facilities occupy areas that shifted from Cropland to 
Built-up following severe 2024 flooding, reflecting rapid post-flood redevelopment. 
Source: Korea Central News Agency.



The observed increase in built-up areas and waterbodies, together with the gradual decline of 
cropland, illustrates how Sinuiju has been quietly reshaped by both development and 
environmental change—visible in the construction of the New Yalu Bridge, the redevelopment 
of Uiju Airfield, and the post-flood reorganization of Wihwa Island. 

While these findings are limited by temporal and geometric inconsistencies in proxy labels, they 
nonetheless suggest that reproducible methods can help narrow the usability gap that 
separates open data from actionable knowledge. In this sense, open satellite data and 
foundation-model AI, when carefully combined through reproducible workflows, may help 
make unseen places more visible. 

/36 51



6. Discussion 

6.1 Data Democratization as Operational Usability 

This study presents a reproducible, proxy-based workflow that fine-tunes a foundation model 
(Satlas Pretrain) using open satellite imagery for producing interpretable LC information for 
label-scarce regions. The application to Sinuiju, North Korea suggests that NKSSM functions not 
merely as a classifier but as a practical instrument for data democratization—transforming 
open-data accessibility into operational usability. Instead of relying on institutional ground 
surveys, the model establishes a form of proxy GT using freely available HR imagery, providing 
a practical basis for consistent and interpretable LC information over time. 

In settings where in-situ validation is constrained, the proxy-label + fine-tuning pipeline 
provides a pragmatic form of usable GT: data that are not perfect, but sufficiently consistent, 
transparent, and reproducible—allowing meaningful longitudinal analysis (2019–2025) and 
transition accounting. 

Such an approach may also contribute to the broader agenda of equitable EO, where open data 
are not only available but also usable. 

In this sense, the study reframes the concept of data democratization from a question of 
access (“Is the data open?”) to a question of use (“Can open data be systematically transformed 
into reliable, policy-relevant evidence?”). This shift emphasizes not technological capability but 
a procedural transparency—the ability for others to reproduce, verify, and extend the results 
using the same open resources. 

We also note that the workflow can be viewed through the lens of appropriate technology—
context-sensitive, affordable, and socially responsive uses of technology (often associated with 
Schumacher, 1973, and, later, Hazeltine & Bull, 1999). Rather than relying on capital-intensive 
infrastructures, the approach seeks what is feasible under real constraints. In this light, 
combining open satellite data with a foundation model through a transparent, reproducible 
pipeline offers one modest way to repurpose advanced computation for regions that are 
otherwise underserved, helping to turn open data into usable, credible, and more inclusive 
environmental knowledge. 

6.2 Reproducibility and Transparent Assumptions 

The proposed workflow emphasizes transparent preprocessing, consistent spatial alignment, 
and clearly defined evaluation procedures, which together support both statistical and 
procedural reproducibility. As detailed in Section 4, the final NKSSM model (seed 33, epoch 68) 
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achieved mean mIoU = 0.7075 ± 0.0309, pixel accuracy = 0.8410 ± 0.0174, Cohen’s kappa = 
0.7608 ± 0.0278, and mean MAE = 0.2693 ± 0.0355 under 1,000 bootstrap iterations. These 
metrics provide a statistically explicit summary of model performance on held-out tiles. 

To avoid overestimating uncertainty when scaling from pixel- to area-level indicators, Section 5 
applied a conservative ±20% perturbation envelope to map-integrated class areas (km²). This 
approach makes the underlying assumptions fully explicit: no post-processing is used, all maps 
are restricted to August–September Sentinel-2 L2A imagery, a single geodetic reference 
(EPSG:4326) is maintained, and a consistent tiling scheme is applied. Given these design 
choices and openly documented parameters, independent researchers can, in principle, 
reproduce the full pipeline, replicate the reported statistics, and audit the sensitivity of results 
to key assumptions. In data-scarce settings, such transparent and reproducible design is 
essential for building confidence in LC estimates and for enabling others to verify, update, or 
extend the results. 

6.3 Methodological Limitations 

Several limitations qualify the scope of the NKSSM results. First, the proxy labels are derived 
from ~0.5 m Google Earth imagery and spatially aligned to Sentinel-2 L2A composites (see 
Section 3.2). Differences in viewing geometry, projection, and acquisition timing introduce 
residual geometric and temporal misalignment—especially near slopes, high-rise structures, and 
seasonally dynamic surfaces. These labels therefore function as near-contemporary proxy 
references rather than absolute GT.  

Second, the August–September observation window and four-band Sentinel-2 input lead to 
known spectral ambiguities between tall summer crops and woody vegetation. As discussed in 
Section 3, this confusion reflects inherent data and phenology constraints and could be 
reduced in future work through multi-season compositing, additional spectral bands, or SAR 
and DEM integration. 

Third, the simplified four-class scheme (Built-up, Cropland, Woody Vegetation, Waterbody) 
stabilizes training but reduces thematic granularity, limiting representation of transitional types 
such as Bare Land and Grassland.  

Fourth, tile-wise inference without full overlap and blending likely yields conservative 
estimates of boundary-focused metrics (e.g., BF1, Trimap-IoU), while the decision to forgo 
morphological smoothing or post-hoc filtering preserves strict reproducibility at the cost of 
minor local irregularities along roads, riverbanks, and urban edges.  
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Finally, area-level uncertainty was propagated from pixel-level error using a conservative ±20% 
envelope based on the MAE-derived procedure in Section 5.4; this ensures that temporal and 
transition analyses remain commensurate with the 10 m spatial resolution but also highlights 
the need for cautious interpretation of fine-scale area differences. 

Beyond these methodological constraints, the geographic representativeness of NKSSM 
remains limited. Approximately 60% of training tiles originate from the southern lowlands of 
the Hwanghae provinces, whereas mountainous regions (e.g., Jagang, Ryanggang, Kangwon) 
are underrepresented (Section 3.3). The current model should therefore be viewed not as a 
nationwide classifier for North Korea but as a proof-of-concept demonstrating a reproducible 
workflow for regional fine-tuning under data-scarce conditions. Future extensions should 
prioritize additional samples from northern and eastern provinces to improve spatial 
generalization and better capture the diversity of terrain, vegetation, and settlement patterns 
across the country. In this sense, Sinuiju functions as an OOD test case relative to all 
development splits, illustrating how the framework behaves when deployed beyond its primary 
training footprint. 
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7. Conclusion 

This study demonstrates that credible LC information can be produced even in the absence of 
conventional GT by pairing proxy supervision with foundation-model fine-tuning. The NKSSM 
workflow—built on transparent preprocessing, consistent spatial alignment, and verifiable 
inference—was designed to convert open satellite accessibility into operational usability. 
Applied to Sinuiju for the 2019–2025 period, it produced reproducible 10 m annual LC maps 
that can be independently inspected, reconstructed, and audited using the same open 
resources. 

Quantitative evaluation indicates that the final model (seed 33, epoch 68) performs robustly on 
held-out tiles: mean mIoU = 0.7075 ± 0.0309, Cohen’s kappa = 0.7608 ± 0.0278, pixel 
accuracy = 0.8410 ± 0.0174, and mean MAE = 0.2693 ± 0.0355 across 1,000 bootstrap 
iterations (Section 4). For map-integrated area indicators, we adopted a conservative ±20% 
envelope based on the MAE-derived procedure of Section 5.4, avoiding the over-extension of 
pixel-level noise to city-scale quantities. Within this uncertainty bound, several directional 
tendencies are consistent: Built-up and Waterbody expanded, Cropland declined, and Woody 
Vegetation fluctuated without a persistent trend. Visual comparisons with Sentinel-2 
composites and HR scenes corroborate the spatial plausibility of these patterns. 

Several limitations qualify the interpretation of these results. Proxy labels derived from ~0.5 m 
Google Earth imagery exhibit residual geometric and temporal misalignment with Sentinel-2 
composites, functioning as near-contemporary references rather than absolute GT. Seasonal 
and four-band spectral constraints in August–September imagery lead to known ambiguities 
between tall summer crops and woody vegetation. A simplified four-class taxonomy reduces 
thematic granularity, while tile-wise inference without full overlap and the absence of post-
processing introduce minor boundary irregularities. Area-level indicators rely on ranges rather 
than point estimates, reflecting the ±(14.5–25.5)% uncertainty envelope used in Section 5.4. 

Beyond methodological constraints, geographic representativeness remains limited: 
approximately 60% of training tiles originate from the southern lowlands of the Hwanghae 
provinces, whereas mountainous regions are underrepresented. NKSSM should therefore be 
understood not as a nationwide classifier for North Korea but as a proof-of-concept 
demonstrating how proxy supervision and foundation-model fine-tuning can support 
reproducible LC mapping under severe data scarcity. 

The design choice to use single-season Sentinel-2 optical imagery (August–September) 
prioritized temporal consistency and methodological clarity for reproducibility testing. Although 
multi-season and multi-sensor data (e.g., SAR) were available, incorporating them would have 
introduced additional alignment and normalization challenges beyond the scope of this initial 
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framework. The moderate bidirectional transitions between Cropland and Woody Vegetation 
(18–27%) largely reflect expected spectral overlap in late-summer conditions. 

Future work will extend this framework by integrating multi-season compositing, multi-sensor 
fusion (SAR–optical–DEM), and expanded spectral inputs up to nine bands. Establishing 
standardized proxy-labeling protocols—combining algorithmic reproducibility with contextual 
expertise—may further support cross-regional applications in diverse data-scarce 
environments. These developments are not proposed as definitive solutions but as practical 
steps toward transparent, reproducible, and socially usable EO workflows that convert open 
data into credible environmental knowledge. In access-restricted regions such as North Korea, 
these steps offer a concrete blueprint for turning satellite openness into usable land-cover 
intelligence that can be routinely updated, scrutinized, and improved. 
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Appendix A. NKSSM Model Training Configuration and Environment

Item Details

Model Architecture Satlas Pretrain (ResNet-50 FPN encoder–decoder)

Input Bands Sentinel-2 L2A RGB + NIR (4-band, 10 m GSD)

Output Classes Built-up (0), Cropland (1), Woody Vegetation (2), Waterbody (3)

Loss Function 0.7 × Lovász-Softmax + 0.3 × Focal Loss

Training Epochs Up to 100 epochs (early stopping at 70 epochs if no improvement)

Optimizer / Scheduler AdamW (learning rate = 1 × 10˗⁴) + cosine annealing scheduler

Batch Size 8

Class Weights Built-up 0.67 / Cropland 1.58 / Woody 2.00 / Waterbody 2.00

Training Techniques Automatic Mixed Precision (AMP); Stochastic Weight Averaging (SWA after 
epoch 30)

Evaluation Metrics Precision, Recall, F1, mIoU, Cohen’s kappa, Boundary-F1, Trimap-IoU

Bootstrap Evaluation 1,000 resampling iterations with 95% confidence interval (CI) estimation

Random Seeds 33, 42, 72, 333 (four independent runs; seed 33 selected as final model)

Execution Environment PyTorch 2.x + CUDA 11.x on NVIDIA L4 GPU (16 GB VRAM)

Result Characteristics mIoU variance across seeds ± 0.01 → high reproducibility confirmed
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HR Images Proxy GT S2 Images NKSSM Pred. HR Images Proxy GT S2 Images NKSSM Pred.

Appendix B. Test-Set Qualitative Examples: HR Imagery, Proxy GT, Sentinel-2 Inputs, and NKSSM Predictions
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HR Images Proxy GT S2 Images NKSSM Pred. HR Images Proxy GT S2 Images NKSSM Pred.
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HR Images Proxy GT S2 Images NKSSM Pred. HR Images Proxy GT S2 Images NKSSM Pred.
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HR Images Proxy GT S2 Images NKSSM Pred. HR Images Proxy GT S2 Images NKSSM Pred.

Source: Google Earth; Sentinel-2 L2A (Google Earth Engine)
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Appendix C. Bootstrap Evaluation Summary (n = 1,000 replicates)

Metric Mean ± 95% Cl Across-Seed SD 
(mIoU unless noted) P-value vs. baseline Notes

mIoU 0.7075 ± 0.0309 ± 0.0094 < 0.01
Baseline = random/
stratified uniform 
labeling

Cohen’s kappa 0.7608 ± 0.0278 − < 0.01 Chance-corrected 
agreement

MAE 0.2693 ± 0.0355 − < 0.01

Pixel-wise error; 
mapped to ±20% 
area uncertainty in 
text

Boundary-F1 0.4255 ± 0.0796 − < 0.01 Boundary sensitivity 
at narrow trimaps

Trimap-IoU (1-3 px) 0.6197 ± 0.0340 − < 0.01 Mean over 1–3 px 
bands

•33, 42, 72, 333 (four independent trainings; seed 33 selected as final model). 

•Bootstrap unit: tile-level resampling (with replacement). 

•CI method: percentile 95% CI from bootstrap distribution. 

•p-value: proportion of bootstrap replicates where the model’s metric ≤ baseline metric (two-sided where 
applicable). 

•Interpretation: Small across-seed variance (±0.01 mIoU) and uniformly low p-values indicate high 
reproducibility and performance significantly above chance.


